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1.0. Introduction 
 
This chapter provides a rapid sketch of the quantum mechanics required to perform 

calculations in nuclear magnetic resonance (NMR). We will not provide too many details, no 
derivations, and will not answer any philosophical questions. The approach is designed to be 
simple and pratical. 

 
1.1. Nuclear Magnetic Resonance 
 
We are going to build a spectrum from first priciples. Figure 1.1 shows the spectrum 

recorded in the absence of any NMR interactions. (Note that the spectrum is not a flat line 
because there is "noise" in the signal that can arise from various sources). The first interaction 
we will consider is the Zeeman effect. 

 
NMR is concerned soley with the motion of nuclear magnetic moments: that is what 

is detected in the experiment. The nucleus possesses an intrinsic magnetic moment of 
classical energy  
 

  

€ 

E = −
! 
µ ⋅
! 
B , (1.1) 
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Figure 1.1. An uninteresting NMR spectrum. 
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where   

€ 

! 
µ  is the magnetic moment and   

€ 

! 
B  an external magnetic field. The corresponding 

Hamiltonian in quantum mechanics is the Zeeman Hamiltonian 
 

    

€ 

!H = −
" 
µ ⋅
" 
B . (1.2)  

 
This Zeeman Hamiltonian is added to the purely nuclear Hamiltonian and it turns out that 
 

  

€ 

! 
µ = γ"I , (1.3)  
 
where γ is the magnetogyric ratio and where   

€ 

! 
I  is the operator corresponding to spin. Thus we 

obtain in a static external magnetic field:   

€ 

! 
B = 0,0,B0( )  

 

  

€ 

H Z = −γB0Iz . (1.4)  
 
Thus, to understand NMR we need to understand the properties and dynamics of spin 
operators. For a more detailed methodic treatment see, for example, Goldman.3 We will stick 
to the essentials necessary for the story. 
 
Besides a possible orbital angular momentum associated with their wave function in 3D 
space, some particles posses an intrinsic angular momentum which is called spin. This is the 
case for the electron, the muon, the quark... (and hence ESR and µSR, but not QSR!). The 
nuclei are complex aggregates of elementary particles and they have a total angular 
momentum resulting from the coupling of the orbital and spin momenta of their constituents. 
From the NMR point of view the nucleus is a point particle, and by extension of the language 
the total angular 
 

∆E = γ?H0
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Figure 1.2. Zeeman energy levels as a function of magnetic field strength for a spin I = 1/2 (left), and a spin I= 1 
(right). 
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Figure 1.3. Vector representation of the state of a quantum mechanical spin system. 
 
 
momentum of the nucleus is given the name spin. For example, 1H has a spin I = 1

2  and can 
occupy states m = + 12 ,−

1
2 . These states are of equal energy in the absence of an external 

magnetic field. This degeneracy is lifted by the field, as illustrated in figure 1.2a. The nuclei 
carbon-13, nitrogen-15, phosphorus-31, silicon-29, and others, all have I = 1

2 . Deuterium has 
a spin I = 1  and can occupy states m = −1, 0, +1 as illustrated in figure 1.2b. Sodium-23 has a 
spin I = 3

2  and can occupy states m = + 32 ,+
1
2 ,−

1
2 ,−

3
2 ; etc.,  

 
In classical mechanics the angular momentum characterises the instantaneous rotation of the 
particle with respect to the origin. In fact, the angular momentum operator lz  is a generator of 
rotations about Oz . The simplest way of characterising the components of a vectorial spin 
operator is to consider them as generators of rotations in a spin space intrinsic to each spin 
and without any relation to the physical (Kirk) space. This is justified by its consequences 
which have been verified by many experiments.  

 
1.2. Vectors and Operators in Spin Space 

 
In the vectorial formulation of quantum theory, illustrated in figure 3, the state of the system 
is labelled by a vector in a vector space called Hilbert space. A physical variable (such as an 
external magnetic field) is labelled by an operator acting in this space. It transforms any 
vector into another vector.  
 
The Dirac notation was introduced in 1930. In this notation we define a vector called a vector 
ket (or simply ket), written φ . For each ket there is a conjugate vector called a bra, φ . The 
scalar product of two vectors ψ  and φ , in this order, is written as a braket, ψ φ . The 
scalar product in Hilbert space is not commutative, but it is defined such that 
ψ φ = φ ψ * . 
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Figure 1.4. The action of an operator A on a state vector is to transform it into another state vector. 
 
Operators acting in Hilbert space. 
 
As we see pictorially in figure 1.4, an operator A acts on a ket or a bra to produce a 
transformation: 
 
Aψ = ʹ ψ 

φ A = ʹ φ 
 (1.5)  

 
Bases 
 
If the vector space has a finite number of dimensions it is possible to find a complete set of 
kets which are of unit norm and which have are mutually orthogonal,  
 
i j = δ ij  (1.6) 

 
which constitute an orthonormal basis. The basis is complete if is possible to write any ket as 
 
ψ = ai i

i
∑ = i

i
∑ i ψ . (1.7) 

 
where the symbol i i  is an operator acting on ψ  and transforming it into its projection on 
i .  

 
Matrix of an operator. 
 
We find that the set of numbers 
 
Aij = i A j . (1.8)  
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constitutes the matrix representation of an operator. 
 
Commutation relations between spin operators. 
 
We consider the spin I = 1

2 . The operator I is a vectorial operator and one can choose three 
mutually orthogonal components Ix , Iy  and Iz . Using the fact that they must transform as 
normal vectors, and also as operators, we can derive commutation relations for the 
components 
 
Iz, Ix[ ] = iIy

Iy ,Iz[ ] = iIx
Ix , Iy[ ] = iIz

. (1.9)  

 
where the commutator A,B[ ] = AB − BA  and reflects the fact that rotations do not normally 
commute. These relations are characteristic of angular momentum. In fact they define angular 
momentum as a generator of rotations.  
 
Matrix representation of the operators Ix , Iy  and Iz  for spin I = 1

2 . 
 
The particular matrix representation, which we need for many calculations, depends on the 
choice of basis set. Two examples follow for a two-level, one spin I = 1

2  system. Using the 
identity 
 
1 = 1 1 + 2 2 . (1.10)  
 
to the left and right of an operator A, we obtain 
 
A = A11 1 1 + A12 1 2 + A21 2 1 + A22 2 2 . (1.11)  
 
where Ars = r A s , from which we obtain the complete set of four orthogonal basis 
operators. That is, with 1 = α and 2 = β,  
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α α = I a =
1 0
0 0
⎛ 
⎝ 

⎞ 
⎠ 

β β = Iβ =
0 0
0 1
⎛ 
⎝ 

⎞ 
⎠ 

α β = I+ =
0 1
0 0
⎛ 
⎝ 

⎞ 
⎠ 

β α = I− =
0 0
1 0
⎛ 
⎝ 

⎞ 
⎠ 

. (1.12) 

 
The operators Iα  and Iβ  are referred to as polarisation operators and I+  and I−  are referred 
to as shift operators. Basis sets are chosen for mathematical convenience (the outcome of the 
calculation of a physical observable cannot depend on the choice of basis), and a more often 
used basis set is obtained by taking the linear combinations: 
 
1
2 1 2 + 2 1( ) = Ix = 1

2
0 1
1 0
⎛ 
⎝ 

⎞ 
⎠ 

− i
2 1 2 − 2 1( ) = Iy = i

2
0 −1
1 0
⎛ 
⎝ 

⎞ 
⎠ 

1
2 1 1 − 2 2( ) = Iz = 1

2
1 0
0 −1
⎛ 
⎝ 

⎞ 
⎠ 

1
2 1 1 + 2 2( ) = 1

21 = 1
2
1 0
0 1
⎛ 
⎝ 

⎞ 
⎠ 

. (1.13)  

 
These matrices are the Pauli matrices, and the operators satisfy the commutation relations of 
equation (1.9) and have eigenvalues of ± 1

2 , so they must be Ix , Iy  and Iz ! Note that the 
fourth component is invariant under unitary transformation and thus the space is completely 
defined by Ix , Iy  and Iz , which correspond to the components of angular momentum along 
Iz  (polarisation) in the direction of the field and to the transverse components Ix  and Iy . The 
three-dimensional space defined by the basis operators is called Liouville space (the space of 
operators) as opposed to the complex two-dimensional Hilbert space (the state space).  

 
1.3. The Density Matrix 
 

The commutation relations between the components of angular momentum are a direct 
consequence of the impossibility of measuring more than one component simultaneously. 
Consider the double Stern-Gerlach experiment shown in figure 1.5. Once the beam is 
separated into the basis states Mz = + 12  and Mz = − 12 , eigenstates of Iz , of which one is 
selected and passed through a second magnetic field to separate into the eigenstates 
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Mx = ±
1
2  the spots are  

 

N

S N

S

α

 
 
Figure 1.5. A double Stern-Gerlach experiment. See text for details. 
 
always equal. Measurement of Mz  renders the angular momentum along any other axis 
completely uncertain. However, this doesn't feel like an NMR experiment. 
 
The problem is that so far we have only treated the behavior of a single isolated spin. We 
cannot hope to describe the whole ensemble represented by the sample using a ket in a 2N 
dimensional Hilbert space of N ~ 1021 identical isolated spins I = 1

2 . Even if we could, how 
would we interpret it? Thus, we adopt a statistical description of the ensemble of subsystems 
in terms of a representative ket. 
 
We consider an ensemble of identical Hilbert spaces and define a distribution of probabilities 
 
P ψ( )dτ . 
 
for the system to be located in the hypervolume dτ. In a state of ket ψ  the expectation value 
of a variable corresponding to an operator A is equal to ψ A ψ . For a statistical distribution 
of kets with the probability law P ψ( ) , the average value of this variable is equal to  
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A = P ψ( ) ψ Aψ∫ dτ . (1.14)  

 
So far this is identical to the classical analogue. We now introduce an orthonormal basis. 
According to the closure theorem A  can be written 
 
A = P ψ( ) ψ i i A j∫ j ψ dτ

ij
∑

= i A j P ψ( )∫ j ψ
ij
∑ ψ i dτ

. (1.15)  

 
We now define an operator 
 
σ = P ψ( )∫ ψ ψ dτ . (1.16)  

 
and equation (1.15) becomes 
 
A = i A j j σ i

ij
∑ . (1.17)  

 
or else 
 
A = Tr Aσ( ) . (1.18)  

 
where the trace of a matrix is defined as  
 
Tr A( ) = i A i

i
∑ . (1.19)  

 
Note that the trace is an essential element in quantum mechanics since the expectation value 
of an operator is obtained through the trace. The trace has all sorts of useful properties. Most 
importantly, despite the fact that the diagonal elements of a matrix depend on the basis set 
used, their sum is independent of the basis. Thus the trace may be calculated in the basis in 
which the calculation is easiest. 
 
All the statistical information on the spectrum is contained in the operator σ. It is called the 
density matrix. 
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Note that the density matrix is a Hermitian operator, and therefore its diagonal elements are 
real numbers, as befits probabilities. In a given basis set a matrix element of σ is 
 
i σ j = P ψ( )∫ i ψ ψ j dτ . (1.20)  

 
expanding ψ  in this basis ψ = ai i

i
∑  yields 

 
i ψ ψ j = aiaj

∗. (1.21)  

 
and we obtain  
 
i σ j = aiaj

∗ . (1.22)  

 
where the bar denotes an ensemble average, that is, the elements of the density matrix are 
averages of coeficients. 
 
Physical Significance of the elements of σ. 
 
For a pure state written in a given basis 
 
ψ = pi exp iφi( ) i

i
∑ . (1.23) 

 
which, when the pi  are positive real numbers, yields a density matrix with elements of the 
form 
 
i σ i = pi

2

j σ j = pj
2

i σ j = pipj exp i φi − φj( ){ }

. (1.24)  

 
If niether i σ i  nor j σ j  vanish, nor does i σ j . This is a consequence of the fact that 
the ket ψ  is a superposition of basis states. For a statistical mixture of kets that could be 
found in an ensemble the off-diagonal element i σ j  may vanish even if i σ i  and j σ j  
are both non-zero, for example if the phases φi  and φj  are distributed at random. The 
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existence of a non-zero off-diagonal matrix element means therefore that the phases φi  and 
φj  are not at random, but retain some coherence on the average. 
 
The statistical state of the system described by this density matrix is said to exhibit a 
coherence between the quantum states i  and j  or else that it contains a coherent 
superposition of these quantum states. The concept of quantum coherence plays a 
fundamental and absolutely central role in modern NMR spectroscopy. 
 
Evolution equation of the density matrix 
 
From the Schrodinger equation 
 

  

€ 

d
dt
ψ = ˙ ψ = −iH ψ  (1.25) 

 
and 
 

  

€ 

d
dt
ψ = ˙ ψ = −iψ H  (1.26) 

 
we obtain for the time-derivative of the projection operator on ψ  
 

  

€ 

d
dt
ψ ψ = ˙ ψ ψ + ψ ˙ ψ 

= −iH ψ ψ + iψ ψ
= −i H ,ψ ψ[ ]

. (1.27) 

 
Since this relation is true for any projection operator, it is also true for any linear combination 
of projection operators, such as the combination that corresponds to the density matrix. We 
thus obtain the Liouville-von Neumann equation 
 

  

€ 

d
dt
σ = −i H ,σ[ ] . (1.28) 

 
Time evolution of the Hamiltonian. 
 
For a time independent Hamiltonian, in a basis of eigenkets of the Hamiltonian,  
 

  

€ 

H i =Ωi i  (1.29) 
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we find that the diagonal elelments of σ are constant as a function of time and that the off-
diagonal elements of σ oscillate without decaying at a frequency Ω i − Ω j . 
 
For the time-independent Hamiltonain the solution to the Liouville-von Neumann equation is  
 

  

€ 

σ t( ) = exp −iHt( )σ 0( )exp +iHt( ) . (1.30) 

 
In general, even when the Hamiltonian is time dependent we have 
 

€ 

σ t( ) =U t( )σ 0( )U† t( ) (1.31) 
 
with  
 

  

€ 

U t( ) = T exp −i H ʹ t ( )d ʹ t 
0

t

∫
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
. (1.32) 

 
Both of these results are very important. 
 
Equation (1.30) will form the basis of the following calculations. Since the Hamiltonian is 
Hermitian,   

€ 

U = exp −iH t{ }  is a unitary transformation (i.e., the norm is conserved) which 
corresponds to a rotation in spin space around an axis defined by the Hamiltonian (we will 
return to this idea shortly). 
 
Now that we have a way of describing the time evolution of the ensemble, and of calculating 
observables, we just need to know what σ is. 
 
The density matrix at thermal equilibrium. 
 
The density matrix at thermal equilibrium must be time-independent. Therefore it is not 
surprising that by general arguments we say that the phases are random and that the off-
diagonal elements are zero. (The mechanism by which the phases are randomised is T2  
relaxation. The mechanism for relaxation (that is, contact with the lattice) and the validity of 
the division between "system" and "lattice" is beyond the scope of this work.) 
 
The diagonal elements characterise probabilities of finding the system in any of its possible 
eigenstates. It can be shown that the probability of finding the system in a state of energy Ei  
is 
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pi = A exp Ei
kT
⎛ 
⎝ 

⎞ 
⎠ . (1.33) 

 
The density matrix satisfying these conditions is  
 

  

€ 

σ = Aexp −βH( )  (1.34) 
 
with   β = ! kT  which is the inverse spin temperature. In the high-temperature domain, so that 
βΩi << 1 we obtain by expansion to first order 
 

  

€ 

σ ≈ A 1−βH( ) . (1.35) 
 
The validity of keeping first order terms is usually very good. However, to explain certain 
experiments it is necessary to keep also higher order terms. So far, these experiments only 
seem relevant to liquid, so for the purposes of solid state NMR it is a good asumption. 
 
We will always be interested in relative quantities, rather than absolutes, so we drop the 
normalisation factor to obtain 
 

  

€ 

σ =1−βH  (1.36) 
 
and since the unity matrix has no effect (it commutes with everything), we finally obtain with 
β = −1 
 
  

€ 

σ = H  (1.37) 
 
1.4. The Zeeman interaction. 
 

We had left the NMR experiment with the Zeeman Hamiltonian of equation (1.4). Now we 
can write the evolution of the system according to equation (1.31) with 
 

  

€ 

U = exp −iH t{ } = exp iγHtIz{ }  (1.38) 
 
which is an operator of rotation around z by an angle φ = −γHt  proportional to time. The 
evolution is therefore a precession around z with a frequency 
 
ω = −γH  (1.39) 
 
which is the same result as obtained by the so-called classical approach.3-6  
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Let us now proceed to some detailed calculations. Normally we write the Zeeman 
Hamiltonian as  
 

  

€ 

Hz =ωIz . (1.39) 
 
The density matrix at time t is now 
 
σ t( ) = exp −iωIzt{ }σ 0( )exp +iωIzt{ } . (1.40) 
 
We are interested in the time evolution of the magnetization, or equivalently the spin 
operators proportional to it. We can obtain an expression for the expectation value of an 
operator 
 
Q t( ) = Tr U† t( )QU t( )σ 0( ){ }  (1.41) 

 
and when H is independent of time 
 

  

€ 

Q t( ) = Tr exp iH t{ }Qexp −iH t{ }σ 0( ){ }  (1.42) 

 
Thus, we find that the z-component is independent of time 
 
Iz t( ) = Tr exp iωIzt( )Iz exp −iωIzt( )σ 0( ){ }

= Tr Izσ 0( ){ } = Iz 0( )
. (1.43) 

 
Why are we doing this?! Why are we so interested in time evolution? NMR is all about time 
evolution. Most importantly what we detect is the oscillation of magnetization. Oscillating 
components of magnetization will induce an oscillating voltage in a coil of suitable geometry: 
This is what we observe. Thus the time-independent z component does not look very useful. 
 
We can calculate the evolution of the two transverse components simultaneously if we look at 
the (non-Hermitian) operator I+ = Ix + iIy . Thus 
 
I+ t( ) = Tr exp iωIzt( )I+ exp −iωIzt( )σ 0( ){ } . (1.44)  

 
simpifies to 
 
I+ t( ) = exp iωt( ) I+ 0( ) . (1.45)  
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using the relation exp iφIz( )I+ exp −iφIz( ) = exp iφ( )I+ .)). We now separate the real and 
imaginary parts which correspond to the expectation values of  Ix  and Iy  respectively.  
 
Ix t( ) = Ix 0( )cosωt − Iy 0( )sinωt

Iy t( ) = Iy 0( )cosωt + Ix 0( )sinωt
. (1.46) 

 
This is the case for H along z. Note that we have calculated the evolution equations for the 
expectation values which do not depend on σ 0( ) .  
 
Our choice of H along z was arbitrary and we may generalise to say that evolution is always 
precession about the Hamiltonian, e.g., 
 

  

€ 

H = −γ HxIx +HyIy +HzIz( ) . (1.47) 
 
This is true for any H at a given instant t, whether it is time dependent or not and whether it 
contains only single spin operators or whether it contains more than three components. Thus, 
much of NMR calculation is concerned with calculating H, or an "effective   

€ 

H "). Evolution 
always corresponds to precession about a field defined by its components in a N = 2n  
dimensional space of operators, as illustrated for one spin I = 1

2  in figure 1.6. Thus for the 
spin I = 1

2  we may generalise 
 

  

d
dt

! 
I = −γ

! 
H ×
! 
I =
! 
ω ×
! 
I . (1.48) 
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Hz
Heff

θ

H1

 
 
Figure 1.6. The effective Hamiltonian is simply the sum of its orthogonal components. The evolution of the 
system can always be represented as a rotation around an axis defined by an effective Hamiltonian in a suitably 
dimensioned space. 
 
 
 
This is identical to the "classical" Bloch Equations 
 

  

d
dt

! 
M = −γ

! 
H ×

! 
M . (1.49) 

 
So, why bother with the quantum treatment? The quantum treatment is easily adapted to treat 
multi-spin systems in a larger dimensional space. The Bloch equations treat a single spin in a 
three-dimensional space.  
 
The spectrum we now observe is shown in figure 1.1. We have found that, even though there 
is a difference in energy levels induced by the magnetic field, there is no oscillating transverse 
component. To obtain a detectable signal we must create a transverse coherence. (This is not 
surprising since we have to irradiate the sample one way or another in all forms of 
spectroscopy). In modern NMR we create the coherence with a radio-frequency pulse applied 
at a frequency close to the Larmor frequency. 
 
Although it is not a very useful example (since in the following it will be assumed by default), 
we will outline the effect of an rf pulse and the transformation to the rotating frame, since it is 
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a good pratical example of a change of representation which renders the Hamiltonian time 
independent. (Once again it is representative of many NMR calculations). In addition to H0  
we now apply a second field H1, much smaller in magnitude than H0  and perpendicular to it, 
and rotating at a frequency ω. 
 
The laboratory frame Hamiltonian is 
 

  

€ 

H =ω0Iz +ω1 Ix cosωt + Iy sinωt( ). (1.50) 

 
where 

€ 

ω1 = γB1 . In order to render   

€ 

H  time independent we use a change of representation. 
Starting with 
 

  

€ 

d
dt
σ = i H ,σ[ ].  

 
a change of representation goes as follows: given an operator Q we can associate it to another 
operator ˜ Q  where 
 
˜ Q = U t( )QU† t( )  (1.51) 

 
where U t( )  is defined by the equation 
 
d
dt
U t( ) = iAU t( )  (1.52) 

 
with A a Hermitian operator which could be time dependent. Thus for ˜ σ  we have  
 
d
dt

˜ σ =
d
dt

UσU†

= ˙ U σU † +U ˙ σ U † + Uσ ˙ U †
 (1.53) 

 
and by substitution of ˙ U , ˙ σ , ˙ U †  
 

€ 

d
dt

˜ σ = iAUσU† −U H,σ[ ]U† − iUσU†A . (1.54) 

 
Since U is unitary it follows that  
 

  

€ 

U H ,σ[ ]U† = UHU†,UσU†[ ] = ˜ H , ˜ σ [ ] (1.55) 
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and we obtain 
 

  

€ 

d
dt

˜ σ = −i ˜ H − A( ), ˜ σ [ ] . (1.56) 

 
In the new representation, defined by equation (1.51), the evolution of ˜ σ  is the same as if the 
system were subjected to an effective Hamiltonian 
 

  

€ 

H eff = ˜ H − A . (1.57) 

 
Returning to the problem we chose  
 
A =ωIz  (1.58) 
 
in equation (1.52) and we have  
 
U = exp −iAt( ) = exp iωIzt( ) . (1.59) 
 
This change of representation corresponds to a rotation around z at a frequency −ω, hence the 
name "rotating frame." 
 
The time-dependent term in   

€ 

H  can be written  
 
Ix cosωt + Iy sinωt = exp −iωIzt( )Ix exp iωIzt( )

=U† t( )IxU t( )
 (1.60) 

 
The effective Hamiltonian in the rotating frame is therefore 
 

  

€ 

H eff = ω0 −ω( )Iz +ω1UU
†IxUU

†

= ω0 −ω( )Iz +ω1Ix
. (1.61) 

 
This Hamiltonian is time-independent. It is of the form of the Zeeman interaction with a 
effective field 

€ 

Beff  with components 
 

€ 

Bz = − ω0 −ω( ) γ
Bx = B1

. (1.62) 
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When ω0 =ω  the effective field is purely transverse and the magnetization precesses around 
the x axis with a frequency ω1 corresponding to the magnitude of the applied magnetic field. 
If the irradiation is applied for a time τ, such that ω1τ = π 2 , Iz  will be converted into pure 
Iy , as illustrated in figure 1.7 
 

z

y

x H1

σ(0) = Iz

σ(τ) = Iy

 
 
Figure 1.7. In the rotating frame the effect of a radio-frequency pulse applied at the resonance frequency is to 
rotate the magnetization around the field. If the field is applied for a duration such that ω1τ = π/2 then the effect 
is to transform longitudinal magnetisation into a pure transverse coherence. 
 

-3 -2 -1 0 1 2 3
frequency (kHz)  

 
Figure 1.8. A simulated NMR spectrum containing one resonance line. This would be the spectrum obtained for 
a given nucleus in the presence of only the Zeeman interaction. 
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If the applied transverse field is then removed, the magnetization will precess purely around 
Iz  in the laboratory frame at the Larmor frequency. (In the rotating frame representation it 
will be stationary because the frame is rotating itself at the Larmor frequency), and an 
oscillating transverse coherence will induce a voltage in a coil with suitable geometry. This 
time-domain signal is digitized and Fourier transformed to yield a frequency-domain 
spectrum. (The advantages of time-domain over frequency-domain spectroscopy are so 
significant that we will not even try to compare the two; many of the experiments discussed in 
the following pages could not be done with cw spectroscopy). 
 
So we now have a "spectrum", as shown in figure 1.8, containing one resonance line per 
nucleus, with an intensity roughly proportional to γ, and a width which is related to the 
duration of the time domain signal (the "transverse relaxation time", a mysterious quantity 
which will not be discussed in more detail here). This is still not a very useful spectroscopy. 

 
1.5. The chemical shift. 
 

Luckily, there is at least one interaction that makes NMR useful. The chemical shift (first 
observed in 1949-50 for 14N by Procter and Yu, for 19F by Dickinson and for 1H independently 
by Lindstrom and Thomas. In 1951 Packard and coworkers first published a single spectrum 
in which three separate 1H resonance peaks were observed in a single compound, ethanol, due 
to three different types of proton. This is what launched NMR into the world of chemistry. 
 
The external field induces local fields in the electronic structure of a molecule and these 
currents (both diamagnetic and partially paramagnetic) will tend to add or subtract to the field 
at the nucleus, thereby modifying the resonance frequency. since the perturbation depends on 
local electronic structure (especially on inner shell electrons) the frequency shift is likely to be 
different for nuclei in different electronic environments. 
 
Calculating these chemical shifts is outside the scope of this work (although it is a very 
dynamic area of research), for the moment we just want to find out what they do to the 
spectrum, and how to measure them. The chemical shift is expressed as follows: 
 

  

€ 

H cs = γI ⋅σ ⋅ B . (1.63) 
 
where I is the spin vector, H is the external magnetic field vector, and σ represents the 
coupling between them. It is a 3 x 3 matrix, with a special name, a tensor (in this case the 
chemical shift tensor). Thus we obtain for H along z,  
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€ 

H cs = γ Ixσ xz
lab + Iyσ yz

lab + Izσ zz
lab( )B0 . (1.64) 

 
where the σαz

lab  are the elements of the laboratory frame representation of the chemical shift 
tensor. We will discuss the tensorial nature of the chemical shift shortly in more detail, and 
see some of its consequences, but for now we will just accept it, as is. 
 
Note that the local fields of most nuclei are very small compared to H0 . In fact, chemical 
shifts are usually measured in ppm (1H has a chemical shift range for diamagnetic solids of 
about 10 ppm, 13C about 200 ppm, etc..). Thus the shifts of the energy levels of the local 
interactions can be treated in first order perturbation theory with respect to   

€ 

Hz =ω0Iz . In this 
way we truncate the Hamiltonian. In a general way (and one that will be used often 
elsewhere) we approach truncation by considering an interaction representation that 
transforms away the effect of the big Hamiltonian   

€ 

H 0 in the time evolution of the density 
matrix. 
 

  

€ 

ʹ σ t( ) = exp iH 0t( )σ t( )exp −iH 0t( )  (1.65) 

 
and 
 

  

€ 

ʹ H 1 t( ) = exp iH 0t( )H1 exp −iH 0t( ) (1.66) 

 
and 
 

  

€ 

ʹ ˙ σ t( ) = −i H1 t( ), ʹ σ t( )[ ] . (1.67) 

 
In this interaction frame (i.e. the rotating frame rotating at ω = ω0  the Hamiltonian   

€ 

H 0 does 
not appear directly, and the components of   

€ 

H1  that do not commute with   

€ 

H 0 appear time-
dependent. Since   

€ 

H 0 >> H1, the harmonic oscillations imposed on   

€ 

H1  by   

€ 

H 0 will lead to a 
zero average. Thus, for the chemical shift we obtain a truncated chemical shift Hamiltonian 
 

    

€ 

H cs = −γB0σ zz
labIz  (1.68) 

 
and a total Hamiltonian 
 

    

€ 

H = H z + H cs =ω0 1−σ zz
lab( )Iz . (1.69) 

 
Note that "truncation" was a form of averaging. It represents the first example of replacing the 
full (complicated) Hamiltonian by an average Hamiltonian. Average Hamiltonians will be 
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discussed further in practically all the later chapters. Thus the spectrum now looks like that in 
Figure 1.9. Indeed we are approaching reality, and spectra that resemble this can be recorded. 
  
We will now come back to the consequences of the tensorial nature of the solid-state NMR 
Hamiltonian. First, though, we will discuss the other interactions which are important in 
solid-state NMR and show that all the interactions have the same mathematical form. 

 

-3 -2 -1 0 1 2 3
frequency (kHz)  

 
Figure 1.9. A simulated NMR spectrum containing three peaks. this is the kind of spectrum that results from the 
presence of Zeeman and isotropic chemical shift interactions only. 

 
1.6. Other Interactions. 
 

The full Hamiltonian can have up to 13 interactions. Fortunately most are usually zero or are 
unobservable. For solid-state NMR the relevant terms are usually 
 

  

€ 

H = H z + HQ + H D + H cs + H J . (1.70) 

 
where   

€ 

HQ  is the quadrupolar Hamiltonian,   

€ 

H D  is the dipolar Hamiltonian, and   

€ 

H J  is the 
scalar coupling Hamiltonian.  
 
The dipolar interaction. 
 
As an example let us take the dipolar interaction. The classical interaction energy E between 
two magnetic moments µ1 and µ2  is 
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€ 

E =
µ1 ⋅µ2

r3
−
3 µ1 ⋅

! r ( ) µ2 ⋅
! r ( )

r5
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

µ0
4π

 (1.71) 

 
and the corresponding spin Hamiltonian is therefore 
 

    

€ 

H D =
µ0!

2γ1γ 2
4πr12

3 I1 ⋅ I2 −
3 I1 ⋅ r12( ) I2 ⋅ r12( )

r12
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (1.72) 

 
We will now do something strange, because we know that subsequently the dipolar 
interaction, like the chemical shift, will be truncated by   

€ 

H 0. We expand   

€ 

H D  into a series of 
orientationally dependent terms, called the dipolar alphabet:  

α

β

Ο

X

Y

Z

x

y

z

γ

 
 
Figure 1.10. Definition of the coordinate system for Wigner rotations. 
 

    

€ 

H D =
µ0!

2γ1γ 2
4πr3

A + B + C + D+ E + F( )  

 
where 
 

€ 

A = I1zI2z 1− 3cos
2θ( )

B = − 1
4 I1

+I2
− + I1

−I2
+( ) 1− 3cos2θ( )

C = − 3
2 I1

+I2z + I1zI2
+( )sinθ cosθ exp −iφ( )

D = − 3
2 I1

−I2z + I1zI2
−( )sinθ cosθ exp +iφ( )

E = − 3
4 I1

+I2
+ sin2θ exp −2iφ( )

F = − 3
4 I1

−I2
− sin2θ exp +2iφ( )

. 

  (1.73) 
 
where the coordinate system is defined in figure 1.10. 
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This notation appears useful when we note that   

€ 

H z  and   

€ 

H D  do not commute. Since   

€ 

H D  is 
about 20 kHz and   

€ 

H z  about 100 MHz,   

€ 

H D  is a perturbation on   

€ 

H z , or, in other words,   

€ 

H z  
will truncate   

€ 

H D  and we retain only those parts of   

€ 

H D  that commute with   

€ 

Hz . Thus the 
high-field truncated dipolar Hamiltonian  is 
 

    

€ 

H D =
1
2

µ0!
2γ1γ 2

4πr3
1− 3cos2θ( ) 3I1zI2z − I1 ⋅ I2( ) (1.74) 

 
and   

€ 

H z,H D[ ] = 0 , which amounts to dropping the terms C, D, E, F. This is the homonuclear 
dipolar Hamiltonian. Furthermore, if I1  and I2  are different nuclei, such that 

  

€ 

ω1 −ω2 >> H D , there is a further truncation, since now the term B is also non-secular, and 
we obtain 
 

  

€ 

H =ω1I1z +ω2I2z + dI1zI2z  (1.75) 
 

where 
  

€ 

d =
µ0!

2γ1γ 2
4πr3

1− 3cos2θ( ). 

 
Effect on the spectrum (heteronuclear interaction) 
 
To calculate the effect on the spectrum we must first of all find a suitable basis set for the 
coupled two spin system. The Hilbert space is now sixteen dimensional and we obtain a 
product basis spanned by 16 basis operators of the two spins I and S 
 
1, Ix ,Iy , Iz, Sx ,Sy ,Sz ,
IxSx , IySx , Iz Sx , IxSy , IySy ,Iz Sy ,IxSz, IySz, IzSz

  (1.76) 

 
The matrix representation of these operators is in terms of 4 x 4 matrices obtained from the 
Pauli matrices for spin I = 1

2  with the direct product as follows:  
 

€ 

Ix = Ix ⊗ 1 =
1
2
0 1
1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⊗

1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =
1
2

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

 

€ 

Sx = 1⊗ Sx =
1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⊗

1
2
0 1
1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =
1
2

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
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€ 

IzSz = Iz ⊗ Sz =
1
2
1 0
0 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⊗

1
2
1 0
0 −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
4

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
 

etc.... 
 
Afterwards the calculation proceeds as before. For the homonuclear dipolar coupling we can 
calculate the free precession signal analytically. After a 90° pulse along y 
 
σ+ 0( ) = Ix +Sx( ) . (1.77) 

 
Typically in NMR calculations we only follow the fate of one component at a time. Thus, for 
the moment we neglect the presence of transverse magnetization of S. We have for the 
transverse magnetization of I at time t 
 

  

€ 

I+ t( ) = Tr exp +iH t( )I+ exp −iH t( )Ix{ } . (1.78) 

 
Using the fact that the Hamiltonian is the sum of three commuting parts and that I+ , Sz[ ] = 0 , 
we obtain 
 

  

€ 

exp +iH t( )I+exp −iH t( ) = exp i ω I +DSz( )Izt( )I+exp −i ωI + DSz( )Izt( )
= exp i ω I +DSz( )t( )I+
= exp iωI t( ) cos D

2
t+ 2iSzsin

D
2
t

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
I+

 (1.79) 

 
which we obtained by using the operator relation exp iφIz( )I+ exp −iφIz( ) = exp iφ( )I+ .)) and 
from the relation  
 
Rz φ( ) = cosφ

2
− 2iIz sin

φ
2

. (1.80) 

 
Inserting this into the expression for I+  we obtain 
 
I+ t( ) = I0 exp iωI t( )cos D

2
t . (1.81) 

 
Thus the dipolar spectrum consists of a doublet at ±D/2 centered at ωI  (and similarly for ωS , 
as shown schematically in figure 1.11a 
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It is very important to note that (i) the splitting contains information about the internucler 
distance, and (ii) it is orientation dependent. 
 

D

frequency

(a)

frequency

1.5D(b)

 
 
Figure 1.11. Schematic doublet splittings obtained at high field under the heteronuclear (a) and homonuclear (b) 
dipolar interaction. 
 
 
The splitting depends on the orientation of the internuclear vector with respect to the magnetic 
field. The orientation dependence or anisotropy was introduced by truncation. It is an all 
important feature of NMR in solids as well as liquids. Note that for θ = 54.74° , 
P2 cosθ( ) = 0 ,   

€ 

HD = 0 . 
 
Homonuclear dipolar spectrum. 
 
In the limit of ω1 − ω2 = 0 , we obtain a single doublet splitting, with a modified value of the 
splitting with respect to the heteronuclear case, figure 1.11b. All our other remarks for the 
heteronuclear case about anisotropy are also valid for the homonuclear case. 
 
Quadrupolar Hamiltonian. 
 
The quadrupolar interaction arises from the presence of an electric field gradient at the 
nucleus interacting with a non-spherical charge distribution. We will not go into more detail. 
We will just note that   

€ 

HQ = 0 for spin 

€ 

I = 1
2 , but that it is normally not zero for 

€ 

I > 1
2 . The 

Hamiltonian is expressed as 
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€ 

HQ =
eQ

6I 2I −1( )!
Vαβ 3

2 IαIβ + Iβ Iα( ) −δαβ I I +1( )[ ]
α,β = x,y,z
∑  (1.82) 

 

    

€ 

HQ =
eQ

6I 2I −1( )!
I ⋅V ⋅ I  (1.83) 

 
where eQ is the nuclear quadrupole moment and V is the electric field gradient tensor. We 
define a quadrupolar coupling constant  
 

  
ωQ =

3e2qQ
4I 2I −1( )!

 (1.84) 

 
where eq represents the field gradient component Vzz , and with an asymmetry parameter 
given by η = Vxx − Vyy( ) Vzz , and the secular Hamiltonian becomes 
 

  

€ 

HQ =
ωQ

3
3Iz

2 − I2 +η Ix
2 − Iy

2( )( ) 1
2 3cos

2θ −1( ) + 1
2ηsin

2θ cos2φ( )  (1.85) 

 
This is very similar to the homonuclear dipolar Hamiltonian for I1 = I2 , and indeed for spin  
 

frequency

 ωQ

 
 
Figure 1.12. Schematic splitting obtained at high field under the first order quadrupolar interaction for a spin I = 
3/2. The center line is at zero frequency, and is flanked by an orientation dependent doublet splitting. 
 
I = 1 , e.g. 2H, we obtain a doublet with an orientation dependent splitting. For higher spins 
we see more lines, e.g. for spin I = 3

2  (23Na) we see an orientation independent central 
transition and two orientation dependent outer lines, as shown in figure 1.12. In general there 
are 2I non-degenerate transitions. 
 
In conclusion, we have clearly seen that the secular parts of   

€ 

H cs,H D  and   

€ 

HQ  are all 
orientation dependent with respect to   

€ 

H z . They all have a tensorial nature. 
 
Tensor notation. 
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What does the "tensorial character" mean? It means that since we measure only the "z-
component" of the interaction that the observables depend on the direction in which we look 
at them. This is perhaps easiest to explain intuitively for the chemical shift in 
phenomenological terms. If we take the example of figure 1.13, where the chemical shift of 
each carbon atom is shown as an ellipsoid. This means that, for example, if the aromatic ring 
is oriented parallel to the field the resonance frequency of an aromatic carbon is relatively 
high, since there is relatively little electronic shielding in this direction compared to when the 
aromatic ring is perpendicular to the field. In the perpendicular orientation there is more 
electronic shielding along the direction of the field, and so the resonance frequency is lower in 
this orientation. The chemical shift is therefore naturally seen to be orientation dependent. 
 
We can also think of the dipolar interaction - if the dipolar interaction is "aligned" with the 
field, its projection onto the field will be large. If it is "orthogonal" to the field its projection 
will be zero. For example, if the effect of an interaction were simply to add a small dc field, 
its transverse component would be truncated and we are left with the projection 

  

€ 

H z
int = H int cosθ . The resultant field depends on the orientation of the dc field. Such an 

interaction transforms as a rank 1 tensor (cosθ). We shall see that the spatial part of the NMR 
Hamiltonians transform as 
 

 
 
Figure 1.13. Schematic representation of the effect of chemical shift anisotropy on the spectrum of a single 
orientation. The position of each peak depends on the relative orientation of the magnetic field with respect to 
the principle axis of the chemical shift tensor. 
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rank 2 tensors, so they have a slightly non-intuitive (

€ 

3cos2θ −1) dependence, i.e., 
"orthogonal" = 54.74°. (Note that some of the spin parts of the Hamiltonian often transform as 
rank 1 tensors).  
 
All of the Hamiltonians we have seen up to now have a common structure 
 

  

€ 

H λ = Cλ IαRαβ
λ Aαβ

λ

αβ = xyz

∑ = Cλ Rαβ
λ Tβα

λ

αβ= xyz

∑  (1.86) 

 
The 

€ 

Cλ depends only on fundamental constants and properties of the nuclear ground state. 
They are in particular constants with respect to rotation in either spin space or space (Kirk) 
space (the final frontier).  
 
The 

€ 

Tβα
λ  are tensors constructed from two vectors, one of which is always a nuclear spin 

vector, whereas the other can be the same nuclear spin vector (

€ 

λ =Q), another nuclear spin 
vector (

€ 

λ = D), or the external magnetic field (

€ 

λ = cs).  
 
The R are spin state independent coupling tensors. All Rλ are rank 2 tensors. For example 
 

  

€ 

H D = CD I1α ⋅Dαβ ⋅ I2β
αβ = xyz

∑  (1.87) 

 
where 

€ 

Dαβ  consists simply of the coefficients going with 

€ 

I1αI2β  
 

  

€ 

H D ∝DxxIxSx + DyyIySy + DzzIzSZ + DxyIxSy ... (1.88) 

 
where, for the untruncated Hamiltonian, the coefficients are found in the dipolar alphabet and 
where, for the truncated heteronuclear dipolar Hamiltonian, only 

€ 

Dzz  is non-zero. 
 
The Rλ can be decomposed into their irreducible representations with respect to the full three-
dimensional rotation group O3: 
 

€ 

R = R 0( ) + R 1( ) + R 2( )

R 0( ) = 1
3Tr R1{ } = Riso

Rαβ
1( ) = 1

2 Rαβ − Rβα( )
Rαβ

2( ) = 1
2 Rαβ + Rβα( ) − Rδαβ

 (1.89) 
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€ 

Riso the orientation independent, isotropic, component, 

€ 

Rαβ
1( )  is the traceless anti-symmetric 

part, and 

€ 

Rαβ
2( ) is the traceless symmetric part of the interaction. Note that the chemical shift 

contains all three parts, in principle, but that the 

€ 

Rαβ
1( )  component is generally not secular and 

thus inobservable. The dipolar and first order quadrupolar interactions are traceless symmetric 
by their very nature. We therefore ignore 

€ 

Rαβ
1( )  in the following. 

 
For all 

€ 

Rλ  there are principle axis systems in which the tensors are diagonal. The diagonal 
components are called the principle components 

€ 

Rxx , 

€ 

Ryy  and 

€ 

Rzz . By convention  
 

€ 

Rzz − R ≥ Rxx − R ≥ Ryy − R  (1.89) 

 
(the 

€ 

Rαα − R  are the principle components of 

€ 

R 2( ) . We often define three other parameters: 
 

€ 

Riso = 1
3Tr R{ }

δ = Rzz −
1
3Tr R{ } = Rzz − R

η =
Ryy − Rxx

Rzz −
1
3Tr R{ }

=
Ryy − Rxx

δ

 (1.90) 

 
δ, the anisotropy, is a measure of how sensitive the interaction is to orientation. η, the 
asymetry parameter, quantifies the deviation from axial symmetry. The dipolar interaction is 
axially symmetric about the line connecting the two nuclei, thus for RD, η = 0, and the 
principle axis system is easy to define. For σ and Q the PAS can be harder to find. 

 
1.7. Lineshapes in Solids. 
 

To calculate the resonance frequency we need to calculate for a given orientation of the 
molecule in the magnet (i.e., for a given orientation of the PAS in the laboratory frame) the 
"projection" onto the secular component of the Hamiltonian. To do this we must rotate the 
PAS into the laboratory frame. Note that, additionally, all the techniques of coherent 
averaging which will be discussed later, rely on rotations. Thus rotations are crucial, and that 
is why we introduced tensor notation, for which the algebra of rotations is highly developed. 
Thus in strict tensor notation we write 
 

  

€ 

H λ = Cλ −1( )m Rl,−m
λ Tl,m

λ

m=− l

l

∑
l
∑  (1.91) 

 
where the 

€ 

Rl,m
λ  derive from the 

€ 

Rα,β
λ , and the 

€ 

Tl,m
λ  derive from the 

€ 

Tα,β
λ . We are now dealing 

with spherical tensors, as opposed to cartesian tensors. At first sight this may seem 
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complicated, but we shall see that in the end it yields simple recipies and tables to calculate 
spectra.  
 
We can already make some simplifications. (i) For second rank symmetric Cartesian tensors 

€ 

Rα,β
λ , only 

€ 

Rl,m
λ  with l = 0,2 will be non-zero. (ii) For the 

€ 

Rλ  in their PAS, only components 
with m  = 0,±2 are non-zero. Thus we find that the 

€ 

ρl,m , the components of 

€ 

Rl,m  in their PAS, 
are 
 

€ 

ρ0,0 = Riso

ρ2,0 = 3
2 Rzz −

1
3Tr R{ }( ) = 3

2δ

ρ2,±2 = 1
2ηδ

 (1.92) 

 
Since we observe the time-evolution of the spin operators in the laboratory, we express the 

€ 

Tl,m  in the laboratory frame. As a result we must also express the 

€ 

Rl,m
λ  in the laboratory frame. 

Since they are irreducible tensor oerators they may be expressed in terms of the 

€ 

ρl,m  and of 
the Wigner rotation matrices, 

€ 

D ʹ m ,m
l αλ,βλ,γ λ( ) , so that 

 

€ 

Rl,m
λ = D ʹ m ,m

l αλ,βλ,γ λ( )ρl, ʹ m 
λ

ʹ m 
∑  (1.93) 

 
where 

€ 

αλ,βλ,γ λ (denoted by 

€ 

Ωλ ) are the Euler angles by which the laboratory frame can be 
brought into coincidence with the λth PAS system, using the sign convention shown in figure 
1.10. The transformation correponds to a rotation by α around z, by β around the new y axis, 
and by γ around the new z axis. 

€ 

D0,0
0  is a constant (unity), and reflects the isotropic 

component. Thus the only Wigner matrix we actually need is the 

€ 

D ʹ m ,m
2  matrix which is given 

in table 1.1. Similarly, the irreducible spin operators 

€ 

Tl,m
λ  are obtained from the Cartesian 

€ 

Tα,β
λ , 

are also given in table 1.1.  
 
We can now express the Hamiltonian in terms of rotational invariants, irreducible tensor 
operators, and elements of the Wigner matrix 

€ 

D ʹ m ,m
2 .  

 
For example, for the dipolar coupling,  
 

    

€ 

CD = 2γ Iγ S!2µ0 4π

ρ2,0
D = 3

2δ
D = 3

2 r
−3

ρ2, ʹ m 
D = 0 for ʹ m ≠ 0

 (1.94) 

 
which yields 
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€ 

R2,m
D = D0,m

2 ΩD( ) 3
2 r

−3  (1.95) 

 
which in turn yields 
 

    

€ 

H D = − 6 γ
Iγ S!2µ0
4π

−1( )mD0,−m
2 ΩD( )T2,mD

m
∑  (1.96) 

 
(Note that the 

€ 

D0,m
2  are identical to the spherical harmonics 

€ 

Y2,m  which behave under rotation 
exactly as the 

€ 

Rl,m .) For the truncated Hamiltonian we find that only 

€ 

T2,0
D  contributes, so  

 

    

€ 

H D = − 6 γ
Iγ S!2µ0
4π

D0,0
2 ΩD( )T2,0D  (1.97) 

 
and we recover 
 

    

€ 

H D =
1
2
γ Iγ S!2µ0
4π

1− 3cos2 β( ) 3I1zI2z − I1 ⋅ I2( ) (1.98) 

 
For the chemical shift we find by a similar calculation 
 

  

€ 

H cs =ω0IZ σ + δ
3cos2 β −1

2
+
1
2
ηsin2 β cos2γ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (1.99) 

 
This notation/formalism will be useful everywhere. 
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Figure 1.14. Simulated spectra showing the lineshape due to the anisotropic chemical shift interaction in the 
high-field NMR spectrum of a single spin I = 1/2 in a static powder sample for three different values of the 
anisotropy parameter. 
 
Consequences of anisotropy on the spectroscopy of solids 
 
In general the calculation of a solid-state NMR spectrum involves the following 
transformations: 
 

€ 

PAS ΩPAS−CRYS⎯ → ⎯ ⎯ ⎯ CRYSTAL ΩMOL−LAB⎯ → ⎯ ⎯ ⎯ LAB  
 
1. Single Crystal Spectra. This is what we have been calculating so far. In principle a 
spectrum of a single crystal will be different for different orientations of the crystal. By 
recording the spectra as a function of orientation with respect to the field we can determine all 
the principle values and the orientation of the CSA tensors in a crystal fixed frame. 
 
2. Powder Spectra. These are more interesting samples (since they are not suitable for X-ray 
studies). A powder is a superposition of all possible crystallite orientations. Therefore we 
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expect to see a spectrum which contains all the frequencies seen in rotation plots, suitably 
weighted by their populations. Thus the lineshape is given by 
 

€ 

I ω( ) = δ ω −ωzz( )p Ω( )dα sinβdβ
0

π

∫
0

2π

∫   

  (1.100) 
 

-6 -4 -2 0 2 4 6
frequency (kHz)  

 
Figure 1.15. Simulated spectrum showing the lineshape due to the dipolar interaction in the high-field NMR 
spectrum of a pair of identical spins I = 1/2 in a static powder sample. (An identical lineshape is observed for the 
quadrupolar interaction for a single spin I = 1). 
 

where p Ω( )  is the probability of finding a particular orientation. ωzz  is the observed 
frequency for that orientation, and is calculated as described above. This form for the 
lineshape leads to a powder pattern. (Note that this is valid for all of CSA, dipolar or 
quadrupolar interactions.), as shown in figure 1.14 and figure 1.15. Note that the princicple 
values of the CSA tensor are available by simple inspection, but that no information is now 
available with respect to the orientation of the PAS. The powder pattern is, of course, 
invariant to the orientation of the sample. Note also that powder spectra are inherently low 
resolution. The width of the pattern is  
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Figure 1.16. Simulated spectrum for three chemically different spin I = 1/2  sites in a static powder sampleEach 
site has a different value of the isotropic chemical shift and different anisotropy parameters. This is typical of 
"real" samples, and demonstrates how the spectrum becomes intractable in the absence of simplification. 
 
often comparable to the difference in chemical shift, leading to spectra such as that shown in 
figure 1.16. One way to improve resolution is to orient the sample. 

 
1.8. Spin Echoes. 
 

The objective of this section is to show how to approach the calculation of the effect of a 
series of rf pulses and delays.  
 
Spin echoes for isolated spin I = 1/2 
 
The spin echo pulse sequence is shown in 1.17a. We can see from a very simple classical 
analysis shown in figure 1.17b that we expect the sequence to "refocus" the chemical shift 
interaction. Let's see if we can obtain this result analytically.  
 
For a spin whose resonance frequency in the rotating frame is ωcs , 
 

  

€ 

H =ωcsIz  (1.101) 
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Figure 1.17. The sequence suitable to produce a spin echo, and the vectorial representation of the evolution of 
two chemically different species a and b evolving at frequencies ωa  and ωb during the sequence. Note that at the 
end of the second τ period the two spins have been refocused. 
 
at time τ we have the operator for evolution 
 
U = exp −iωcsτIz( )  (1.102) 

 
Immediately after the second pulse we have  
 
U τ +( ) = exp −iπIx( )exp −iωcsτIz( ) , (1.103) 

 
and at a time t later this becomes 
 
U t + τ( ) = exp −iωcstIz( )exp −iπIx( )exp −iωcsτIz( )  (1.104) 

 
which can be written under the form 
 
U t + τ( ) = exp −iωcs t −τ( )Iz( )exp −iωcsτIz( )exp −iπIx( )exp −iωcsτIz( ) . (1.105) 

 
Considering the last three operators on the right hand side of eq. (1.105) 
 
R = exp −iωcsτIz( )exp −iπIx( )exp −iωcsτIz( ) . (1.106) 

 
It can be shown that if U is a unitary operator 
 
Uexp A( )U−1 = exp UAU−1( ) , (1.107) 
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and going back to equation (1.106) we can write 
 
R = exp −iωcsτIz( )exp −iπIx( )exp −iωcsτIz( )exp iπIx( )exp −iπIx( )  (1.108) 

 
where the product of the three central operators is of the form of equation (1.107) with 
 
U = exp −iπIx( ),A = −iωcsτIz, f A( ) = exp −iωcsτA( )  (1.109) 

 
so that 
 
exp −iπIx( )exp −iωcsτIz( )exp iπIx( ) = exp iωcsτIz( )  (1.110) 

 
and equation (1.106) yields 
 
R = exp −iωcsτIz( )exp iωcsτIz( )exp −iπIx( ) = exp −iπIx( ) . (1.111) 

 
Thus, equation (1.105) becomes 
 

€ 

U t + τ( ) = exp −iωcs t − τ( )Iz( )exp −iπIx( ). (1.112) 

 
Note that we have manipulated the evolution operator, which is a very common trick in NMR, 
and not the density matrix. Thus the result is valid for any initial state of the system 
represented by σ. We note that the total evolution operator consists of (i) an initial pulse of 
angle π about x, (ii) precession about z by an angle φ = ωcs t −τ( ) . Note especially that for 
τ = t , 
 
U 2τ( ) = exp −iπIx( ) . (1.113) 

 
and the evolution is independent of chemical shift. This corresponds to the formation of a spin 
echo, as was predicted in figure 1.17. 
 
 
 
 

π/2(x) π(y)

τ τ
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Figure 1.18. The qudrupolar echo pulse sequence. 
 
 
Quadrupolar Echoes. 
 
The quadrupolar echo (or "solid echo") serves to refocus the evolution of spins under 
Hamiltonians which are bilinear in the same type of spins, such as homonuclear dipolar or 
quadrupolar couplings of the form 
 

  

€ 

H = 3I1zI2z − I1 ⋅ I2. (1.114) 
 
which are not refocused by the sequence above (the Hahn echo). The quadrupolar echo is 
generated using the sequence shown in figure 1.18, which leads to the following propagator 
 
U t + τ( ) = exp −iωθτ 3I1zI2z − I1 ⋅ I2( )( )exp +i π2 Iy( )exp −iωθ t 3I1z I2z − I1 ⋅ I2( )( ) . (1.115) 

 
Analogously to the previous example, this can be written 
 
U t + τ( ) = exp −iωθτ 3I1zI2z − I1 ⋅ I2( )( )exp +i π2 Iy( )exp −iωθ t 3I1z I2z − I1 ⋅ I2( )( )

×exp −i π2 Iy( )exp +i π2 Iy( )
 (1.116) 

 
and using equation (1.107) again we obtain 
 
U t + τ( ) = exp −iωθτ 3I1zI2z − I1 ⋅ I2( )( )exp −iωθt 3I1x I2x − I1 ⋅ I2( )( )exp +i π2 Iy( ) . (1.117) 

 
The two leftmost exponentials can be combined, since I1zI2z  commutes with I1xI2 x , so that 
for τ = t , by using the relation 
 
3I1zI2z − I1 ⋅ I2 + 3I1x I2x − I1 ⋅ I2 +3I1y I2y − I1 ⋅ I2 = 0 , (1.118) 

 
(which is of great relevance elsewhere) and by expanding the scalar product I1 ⋅ I2  we obtain 
 
U 2τ( ) = exp −iωθτ 3I1y I2y − I1 ⋅ I2( )( )exp +i π2 Iy( ) . (1.119) 

 
For σ 0( ) = Iy , created by an x pulse from z  magnetization, we thus find an echo condition 
 
σ 2τ( ) = U 2τ( )IyU

† 2τ( ) = Iy . (1.120) 
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since 3I1yI2y − I1 ⋅ I2, Iy[ ] = 0  (analogously to Zeeman truncation). Note that this only works 
for a single dipolar interaction. For a many spin dipolar coulping, with the sum over all pairs, 
it does not work. It always works for the first order quadrupolar interaction, and is widely 
used to avoid "deadtime effects," and to study molecular dynamics (since dynamics can 
interfere with the echo formation).7 
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