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1.0. Introduction

This chapter provides a rapid sketch of the quantum mechanics required to perform
calculations in nuclear magnetic resonance (NMR). We will not provide too many details, no
derivations, and will not answer any philosophical questions. The approach is designed to be

simple and pratical.

1.1. Nuclear Magnetic Resonance

We are going to build a spectrum from first priciples. Figure 1.1 shows the spectrum
recorded in the absence of any NMR interactions. (Note that the spectrum is not a flat line
because there is "noise" in the signal that can arise from various sources). The first interaction

we will consider is the Zeeman effect.

NMR is concerned soley with the motion of nuclear magnetic moments: that is what
is detected in the experiment. The nucleus possesses an intrinsic magnetic moment of

classical energy

—

E=-ii-B, (1.1)

-3 -2 -1 0 1 2 3
frequency (kHz)

Figure 1.1. An uninteresting NMR spectrum.
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where u is the magnetic moment and B an external magnetic field. The corresponding

Hamiltonian in quantum mechanics is the Zeeman Hamiltonian

nH =-ii-B. (12)
This Zeeman Hamiltonian is added to the purely nuclear Hamiltonian and it turns out that
w=vyhl, (1.3)

where y is the magnetogyric ratio and where I is the operator corresponding to spin. Thus we

obtain in a static external magnetic field: B = (0,0,B,)
H,=-yB,l.. (14)

Thus, to understand NMR we need to understand the properties and dynamics of spin
operators. For a more detailed methodic treatment see, for example, Goldman.3 We will stick

to the essentials necessary for the story.

Besides a possible orbital angular momentum associated with their wave function in 3D
space, some particles posses an intrinsic angular momentum which is called spin. This is the
case for the electron, the muon, the quark... (and hence ESR and uSR, but not QSR!). The
nuclei are complex aggregates of elementary particles and they have a total angular
momentum resulting from the coupling of the orbital and spin momenta of their constituents.
From the NMR point of view the nucleus is a point particle, and by extension of the language

the total angular

A A /‘1

me AE = yhH,

+1/2

+1
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Figure 1.2. Zeeman energy levels as a function of magnetic field strength for a spin / = 1/2 (left), and a spin /=1
(right).

v Yl

Figure 1.3. Vector representation of the state of a quantum mechanical spin system.

momentum of the nucleus is given the name spin. For example, 'H has a spin [ = % and can
occupy states m = +%,—%. These states are of equal energy in the absence of an external
magnetic field. This degeneracy is lifted by the field, as illustrated in figure 1.2a. The nuclei
carbon-13, nitrogen-15, phosphorus-31, silicon-29, and others, all have [ = % Deuterium has
aspin / =1 and can occupy states m = —1,0,+1 as illustrated in figure 1.2b. Sodium-23 has a

spin [ =% and can occupy states m = +%,+%,—%,—%; etc.,

In classical mechanics the angular momentum characterises the instantaneous rotation of the
particle with respect to the origin. In fact, the angular momentum operator /, is a generator of
rotations about O,. The simplest way of characterising the components of a vectorial spin
operator is to consider them as generators of rotations in a spin space intrinsic to each spin
and without any relation to the physical (Kirk) space. This is justified by its consequences

which have been verified by many experiments.
1.2. Vectors and Operators in Spin Space

In the vectorial formulation of quantum theory, illustrated in figure 3, the state of the system
is labelled by a vector in a vector space called Hilbert space. A physical variable (such as an
external magnetic field) is labelled by an operator acting in this space. It transforms any

vector into another vector.

The Dirac notation was introduced in 1930. In this notation we define a vector called a vector
ket (or simply ket), written |¢). For each ket there is a conjugate vector called a bra, {¢|. The
scalar product of two vectors [p) and |¢), in this order, is written as a braket, (y|¢). The

scalar product in Hilbert space is not commutative, but it is defined such that

(Wlo)= (ol )*.
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Figure 1.4. The action of an operator A on a state vector is to transform it into another state vector.

Operators acting in Hilbert space.

As we see pictorially in figure 1.4, an operator A acts on a ket or a bra to produce a

transformation:
Aly)=lv')
(@lA= (9]

(1.5)

Bases

If the vector space has a finite number of dimensions it is possible to find a complete set of

kets which are of unit norm and which have are mutually orthogonal,
(il7) = 0, (1.6)

which constitute an orthonormal basis. The basis is complete if is possible to write any ket as

)= Y ali) - Eli)(ilw). (1.7)

i

where the symbol |i){i| is an operator acting on |1/J) and transforming it into its projection on

li).
Matrix of an operator.

We find that the set of numbers

Ay = GlAL). (1)
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constitutes the matrix representation of an operator.
Commutation relations between spin operators.
We consider the spin [ = % The operator I is a vectorial operator and one can choose three

mutually orthogonal components I, I, and [,. Using the fact that they must transform as

normal vectors, and also as operators, we can derive commutation relations for the

components
[1..1.] =i,
[Iy ,IZ] — il . (19)
[1,.1,]= 11,

where the commutator [ A,B] = AB— BA and reflects the fact that rotations do not normally
commute. These relations are characteristic of angular momentum. In fact they define angular

momentum as a generator of rotations.

Matrix representation of the operators I, I, and I, for spin I = %

The particular matrix representation, which we need for many calculations, depends on the
choice of basis set. Two examples follow for a two-level, one spin I = % system. Using the

identity

1 =|1X1] +]2X2]. (1.10)
to the left and right of an operator A, we obtain

A = A I+ A [IX2] + Ay [2)(1] + Ay | 2X2]. (1.11)

where A, = (r|A|s), from which we obtain the complete set of four orthogonal basis

operators. That is, with 1 = a¢and 2 = 3,
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SO
Nl

—_ O

(1.12)

(=Ne]

=N

The operators I“ and I P are referred to as polarisation operators and I and I~ are referred
to as shift operators. Basis sets are chosen for mathematical convenience (the outcome of the
calculation of a physical observable cannot depend on the choice of basis), and a more often

used basis set is obtained by taking the linear combinations:
01
Hinel+12xXi) =1, = 4(Y )

~L(l-12X1l) =1, - 5((1) -01>
(1.13)
X122 = 1. = 4 )

Lt +12x2]) = L1 =%<(1) (1)>

These matrices are the Pauli matrices, and the operators satisfy the commutation relations of
equation (1.9) and have eigenvalues of :%, so they must be I, I, and [,! Note that the
fourth component is invariant under unitary transformation and thus the space is completely
defined by I, I, and I,, which correspond to the components of angular momentum along
I, (polarisation) in the direction of the field and to the transverse components /, and L. The
three-dimensional space defined by the basis operators is called Liouville space (the space of

operators) as opposed to the complex two-dimensional Hilbert space (the state space).
1.3. The Density Matrix

The commutation relations between the components of angular momentum are a direct
consequence of the impossibility of measuring more than one component simultaneously.
Consider the double Stern-Gerlach experiment shown in figure 1.5. Once the beam is
separated into the basis states |MZ = +%) and |MZ = —%), eigenstates of I, of which one is

selected and passed through a second magnetic field to separate into the eigenstates
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M, = =1} the spots are
[M, ==4)

Figure 1.5. A double Stern-Gerlach experiment. See text for details.

always equal. Measurement of M, renders the angular momentum along any other axis

completely uncertain. However, this doesn't feel like an NMR experiment.

The problem is that so far we have only treated the behavior of a single isolated spin. We
cannot hope to describe the whole ensemble represented by the sample using a ket in a 2"
dimensional Hilbert space of N ~ 10! identical isolated spins [ = % Even if we could, how
would we interpret it? Thus, we adopt a statistical description of the ensemble of subsystems

in terms of a representative ket.
We consider an ensemble of identical Hilbert spaces and define a distribution of probabilities
P(y)dr.

for the system to be located in the hypervolume dz. In a state of ket [i) the expectation value
of a variable corresponding to an operator A is equal to {i|A|y). For a statistical distribution

of kets with the probability law P(l])) , the average value of this variable is equal to
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(A)= f Py XAl . (1.14)

So far this is identical to the classical analogue. We now introduce an orthonormal basis.

According to the closure theorem (A) can be written

(4= Y [Pl Xy X ALKl e

. (1.15)
= > [P Kily Xy e
=
We now define an operator
o = [Pl )yldr. (1.16)

and equation (1.15) becomes

(A)= E(i Al jXjloli). (1.17)

or else
(A) = Tr(Ao). (1.18)
where the trace of a matrix is defined as

Tr(A) = E(ilAli). (1.19)

Note that the trace is an essential element in quantum mechanics since the expectation value
of an operator is obtained through the trace. The trace has all sorts of useful properties. Most
importantly, despite the fact that the diagonal elements of a matrix depend on the basis set
used, their sum is independent of the basis. Thus the trace may be calculated in the basis in

which the calculation is easiest.

All the statistical information on the spectrum is contained in the operator o. It is called the

density matrix.
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Note that the density matrix is a Hermitian operator, and therefore its diagonal elements are

real numbers, as befits probabilities. In a given basis set a matrix element of o'is
(o1 ) = [Pl Xily Xl (120)

expanding [y) in this basis [y ) = Eaih') yields

i
(ilyXw )= aa;. (121)
and we obtain

(ilo] j) = a;a; . (1.22)

where the bar denotes an ensemble average, that is, the elements of the density matrix are

averages of coeficients.
Physical Significance of the elements of o.

For a pure state written in a given basis

ly) = Ep,- explig; )|i). (123)

which, when the p; are positive real numbers, yields a density matrix with elements of the

form
(iloli) = p!
(jlol ) = p} . (1.24)

(o1 = panyexe{ifo: - )}

If niether (i|o]i) nor ( j |0| j) vanish, nor does (i |O'| j). This is a consequence of the fact that
the ket |y) is a superposition of basis states. For a statistical mixture of kets that could be
found in an ensemble the off-diagonal element G |O'| j) may vanish even if (ilo]i) and ( j |0| j)

are both non-zero, for example if the phases ¢ and ¢; are distributed at random. The
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existence of a non-zero off-diagonal matrix element means therefore that the phases ¢; and

¢, are not at random, but retain some coherence on the average.

The statistical state of the system described by this density matrix is said to exhibit a
coherence between the quantum states |i) and |j) or else that it contains a coherent
superposition of these quantum states. The concept of quantum coherence plays a
fundamental and absolutely central role in modern NMR spectroscopy.

Evolution equation of the density matrix

From the Schrodinger equation

d :

Z2)=10)==Hw) (123
and

d , ,

2 1=tl=-iwH (120

we obtain for the time-derivative of the projection operator on |y)

d . .
2K =l K+l X

= —iH[w )|+ fwXy- (127)
=—i[H JyXv]]

Since this relation is true for any projection operator, it is also true for any linear combination
of projection operators, such as the combination that corresponds to the density matrix. We

thus obtain the Liouville-von Neumann equation

Lo-—i3.0]. (1.28)

Time evolution of the Hamiltonian.

For a time independent Hamiltonian, in a basis of eigenkets of the Hamiltonian,

H|i)= i) (1.29)
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we find that the diagonal elelments of o are constant as a function of time and that the off-

diagonal elements of o oscillate without decaying at a frequency €2; - €2 ;.

For the time-independent Hamiltonain the solution to the Liouville-von Neumann equation is
o(t) = exp(~iHt)o(0)exp(+iFH:). (1.30)
In general, even when the Hamiltonian is time dependent we have

o(1)=U(t)o(0)U' (1) (1.31)

with
U(r) = Texp{—i [ (t’)dt’}. (1.32)

Both of these results are very important.

Equation (1.30) will form the basis of the following calculations. Since the Hamiltonian is
Hermitian, U = exp{—iH t} is a unitary transformation (i.e., the norm is conserved) which
corresponds to a rotation in spin space around an axis defined by the Hamiltonian (we will

return to this idea shortly).

Now that we have a way of describing the time evolution of the ensemble, and of calculating

observables, we just need to know what o'is.
The density matrix at thermal equilibrium.

The density matrix at thermal equilibrium must be time-independent. Therefore it is not
surprising that by general arguments we say that the phases are random and that the off-
diagonal elements are zero. (The mechanism by which the phases are randomised is 7,
relaxation. The mechanism for relaxation (that is, contact with the lattice) and the validity of

the division between "system" and "lattice" is beyond the scope of this work.)

The diagonal elements characterise probabilities of finding the system in any of its possible
eigenstates. It can be shown that the probability of finding the system in a state of energy E;

is
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E.
pi = AeXP(k—}) : (133)

The density matrix satisfying these conditions is
o = Aexp(-pH ) (1.34)

with 8 = ii/kT which is the inverse spin temperature. In the high-temperature domain, so that

|[3’Ql~| << 1 we obtain by expansion to first order

o=~A(l-pH). (1.35)
The validity of keeping first order terms is usually very good. However, to explain certain
experiments it is necessary to keep also higher order terms. So far, these experiments only

seem relevant to liquid, so for the purposes of solid state NMR it is a good asumption.

We will always be interested in relative quantities, rather than absolutes, so we drop the

normalisation factor to obtain
o=1-pH (1.36)

and since the unity matrix has no effect (it commutes with everything), we finally obtain with

p=-1
o=H (1.37)
1.4. The Zeeman interaction.

We had left the NMR experiment with the Zeeman Hamiltonian of equation (1.4). Now we

can write the evolution of the system according to equation (1.31) with
U = exp{-iH t} = exp{iyH1l.} (1.38)

which is an operator of rotation around z by an angle ¢ = —yHt proportional to time. The

evolution is therefore a precession around z with a frequency
w=-yH (1.39)

which is the same result as obtained by the so-called classical approach.3-6
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Let us now proceed to some detailed calculations. Normally we write the Zeeman

Hamiltonian as

H.=wl. . (1.39)
The density matrix at time 7 iS now

o(t) = exp{-iwl_t}o(0)exp{+iwl i} . (1.40)

We are interested in the time evolution of the magnetization, or equivalently the spin
operators proportional to it. We can obtain an expression for the expectation value of an

operator

(0)r) = TH{U" (nou (o (0)} (141)
and when H is independent of time

(OX) = Tr{exp{iH t}Qexp{-iH 1}o(0)} (142)
Thus, we find that the z-component is independent of time

(1)) {exp(zw] t)1,exp(- ia)lzt)a(O)}

= 1r{Lo(0)} ={L.)0)

(1.43)

Why are we doing this?! Why are we so interested in time evolution? NMR is all about time
evolution. Most importantly what we detect is the oscillation of magnetization. Oscillating
components of magnetization will induce an oscillating voltage in a coil of suitable geometry:

This is what we observe. Thus the time-independent 7 component does not look very useful.

We can calculate the evolution of the two transverse components simultaneously if we look at

the (non-Hermitian) operator I, =1, +il 3 Thus
(1.X0) = Tr{explioof 1)1, exp(-iwLt)o(0)}. (1.44)
simpifies to

(1,)t) = exp(icwt)(1, X0). (1.45)
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using the relation exp(iqb]z)l + exp(—i¢]z)=exp(i¢)l +-). We now separate the real and

imaginary parts which correspond to the expectation values of 7, and I, respectively.

(1))
(1, )X

This is the case for H along z. Note that we have calculated the evolution equations for the

1.)(0)cos wt — (I, X 0)sinwt
) () (1.46)

)
(Iy>(0)cos wt + (I, X0)sin wr .

expectation values which do not depend on o(0).

Our choice of H along z was arbitrary and we may generalise to say that evolution is always

precession about the Hamiltonian, e.g.,
H=-y(HI+HI+H.L). (1.47)

This is true for any H at a given instant ¢, whether it is time dependent or not and whether it
contains only single spin operators or whether it contains more than three components. Thus,
much of NMR calculation is concerned with calculating H, or an "effective H "). Evolution
always corresponds to precession about a field defined by its components in a N =2"
dimensional space of operators, as illustrated for one spin / = % in figure 1.6. Thus for the

spin [ = % we may generalise

—I=—yHxI=dx1. (1.48)
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Figure 1.6. The effective Hamiltonian is simply the sum of its orthogonal components. The evolution of the
system can always be represented as a rotation around an axis defined by an effective Hamiltonian in a suitably
dimensioned space.

This is identical to the "classical" Bloch Equations

d - .-
—M=—yH xM . 1.49
dt r (1.49)

So, why bother with the quantum treatment? The quantum treatment is easily adapted to treat
multi-spin systems in a larger dimensional space. The Bloch equations treat a single spin in a

three-dimensional space.

The spectrum we now observe is shown in figure 1.1. We have found that, even though there
is a difference in energy levels induced by the magnetic field, there is no oscillating transverse
component. To obtain a detectable signal we must create a transverse coherence. (This is not
surprising since we have to irradiate the sample one way or another in all forms of
spectroscopy). In modern NMR we create the coherence with a radio-frequency pulse applied

at a frequency close to the Larmor frequency.

Although it is not a very useful example (since in the following it will be assumed by default),

we will outline the effect of an rf pulse and the transformation to the rotating frame, since it is
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a good pratical example of a change of representation which renders the Hamiltonian time
independent. (Once again it is representative of many NMR calculations). In addition to H
we now apply a second field H;, much smaller in magnitude than H, and perpendicular to it,

and rotating at a frequency w.

The laboratory frame Hamiltonian is

H =w,I_+ wl(lx coswt + 1, sina)t). (1.50)

where o, = yB,. In order to render #{ time independent we use a change of representation.
Starting with

ia=i[.’7—[,o].

dt

a change of representation goes as follows: given an operator Q we can associate it to another

operator O where
0= U(r)oU' (1) (1.51)

where U(t) is defined by the equation

%U(i) = iAU(t) (1.52)

with A a Hermitian operator which could be time dependent. Thus for & we have

d d

—5=—UoU"

dt  dt (1.53)
=UoU" +UoU" + UoU'

and by substitution of U,5,U i

4 5 - iaUoU - U[H,oU" -iUoU'A. (1.54)

dt

Since U is unitary it follows that

U[H o|u" =[UHU UoU'] = [ﬂ ,5] (155)
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and we obtain
d . Iy -
L5= —z[(.’]‘[ _ A),a] . (1.56)
dt

In the new representation, defined by equation (1.51), the evolution of & is the same as if the

system were subjected to an effective Hamiltonian
H,=H-A. (157)
Returning to the problem we chose

A=wl (1.58)

Z

in equation (1.52) and we have
U = exp(-iAt) = expliol 1). (1.59)

This change of representation corresponds to a rotation around z at a frequency —w, hence the

name "rotating frame."
The time-dependent term in H can be written

I, coswt + I sinwt = exp(—iwlzt)lx exp(iwlzt)

(1.60)
= U ()LU()
The effective Hamiltonian in the rotating frame is therefore
H,, =(w, - o)l +0,UUTUU
; . (1.61)

= (@, - o)L + o/,

This Hamiltonian is time-independent. It is of the form of the Zeeman interaction with a

effective field B,; with components

B, =—(a)0 —a))/y.

(1.62)
Bx =Bl
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When w, = w the effective field is purely transverse and the magnetization precesses around
the x axis with a frequency w,; corresponding to the magnitude of the applied magnetic field.
If the irradiation is applied for a time 7, such that w;t =x/2, I, will be converted into pure

1, , as illustrated in figure 1.7

0(0) =1,

o(t) =1,

b H]

Figure 1.7. In the rotating frame the effect of a radio-frequency pulse applied at the resonance frequency is to
rotate the magnetization around the field. If the field is applied for a duration such that w,t = nt/2 then the effect
is to transform longitudinal magnetisation into a pure transverse coherence.

3 2 3 0 i 2 3
frequency (kHz)

Figure 1.8. A simulated NMR spectrum containing one resonance line. This would be the spectrum obtained for
a given nucleus in the presence of only the Zeeman interaction.
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If the applied transverse field is then removed, the magnetization will precess purely around
I, in the laboratory frame at the Larmor frequency. (In the rotating frame representation it
will be stationary because the frame is rotating itself at the Larmor frequency), and an
oscillating transverse coherence will induce a voltage in a coil with suitable geometry. This
time-domain signal is digitized and Fourier transformed to yield a frequency-domain
spectrum. (The advantages of time-domain over frequency-domain spectroscopy are So
significant that we will not even try to compare the two; many of the experiments discussed in

the following pages could not be done with cw spectroscopy).

So we now have a "spectrum", as shown in figure 1.8, containing one resonance line per
nucleus, with an intensity roughly proportional to y, and a width which is related to the
duration of the time domain signal (the "transverse relaxation time", a mysterious quantity

which will not be discussed in more detail here). This is still not a very useful spectroscopy.
1.5. The chemical shift.

Luckily, there is at least one interaction that makes NMR useful. The chemical shift (first
observed in 1949-50 for '“N by Procter and Yu, for "°F by Dickinson and for 'H independently
by Lindstrom and Thomas. In 1951 Packard and coworkers first published a single spectrum
in which three separate "H resonance peaks were observed in a single compound, ethanol, due

to three different types of proton. This is what launched NMR into the world of chemistry.

The external field induces local fields in the electronic structure of a molecule and these
currents (both diamagnetic and partially paramagnetic) will tend to add or subtract to the field
at the nucleus, thereby modifying the resonance frequency. since the perturbation depends on
local electronic structure (especially on inner shell electrons) the frequency shift is likely to be

different for nuclei in different electronic environments.

Calculating these chemical shifts is outside the scope of this work (although it is a very
dynamic area of research), for the moment we just want to find out what they do to the

spectrum, and how to measure them. The chemical shift is expressed as follows:
H, =yl-0-B. (1.63)

where I is the spin vector, H is the external magnetic field vector, and o represents the
coupling between them. It is a 3 x 3 matrix, with a special name, a tensor (in this case the

chemical shift tensor). Thus we obtain for H along z,
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H, = y([ o+ 10" +1 0’“")30. (1.64)

C. XXz y yz 7 Z
where the a(lgb are the elements of the laboratory frame representation of the chemical shift
tensor. We will discuss the tensorial nature of the chemical shift shortly in more detail, and

see some of its consequences, but for now we will just accept it, as is.

Note that the local fields of most nuclei are very small compared to H, . In fact, chemical
shifts are usually measured in ppm (‘H has a chemical shift range for diamagnetic solids of
about 10 ppm, “C about 200 ppm, etc..). Thus the shifts of the energy levels of the local
interactions can be treated in first order perturbation theory with respect to H. = wyl, . In this
way we truncate the Hamiltonian. In a general way (and one that will be used often
elsewhere) we approach truncation by considering an interaction representation that

transforms away the effect of the big Hamiltonian J{, in the time evolution of the density

matrix.

o'(1) = exp(iH,yt)o(r)exp(-iFH ) (1.65)
and

H(1) = exp(iFH 1) H, exp(-iFH 1) (1.66)
and

&'(t) == H,(1).0'(1)]. (1.67)

In this interaction frame (i.e. the rotating frame rotating at @ = w, the Hamiltonian J{, does
not appear directly, and the components of 5'-[1 that do not commute with JH, o appear time-
dependent. Since H, >> 7, the harmonic oscillations imposed on F, by H, will lead to a
zero average. Thus, for the chemical shift we obtain a truncated chemical shift Hamiltonian

H. =-yBo1l (1.68)

Z z
and a total Hamiltonian

H=H +H =o,1-02)L. (1.69)

Z

Note that "truncation" was a form of averaging. It represents the first example of replacing the

full (complicated) Hamiltonian by an average Hamiltonian. Average Hamiltonians will be
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discussed further in practically all the later chapters. Thus the spectrum now looks like that in

Figure 1.9. Indeed we are approaching reality, and spectra that resemble this can be recorded.

We will now come back to the consequences of the tensorial nature of the solid-state NMR
Hamiltonian. First, though, we will discuss the other interactions which are important in

solid-state NMR and show that all the interactions have the same mathematical form.

-3 -2 -1 2 3

0 1
frequency (kHz)

Figure 1.9. A simulated NMR spectrum containing three peaks. this is the kind of spectrum that results from the
presence of Zeeman and isotropic chemical shift interactions only.

1.6. Other Interactions.

The full Hamiltonian can have up to 13 interactions. Fortunately most are usually zero or are

unobservable. For solid-state NMR the relevant terms are usually

H=H +H,+H,+H +H,. (1.70)

where H, o 1s the quadrupolar Hamiltonian, H,, is the dipolar Hamiltonian, and 7, is the

scalar coupling Hamiltonian.
The dipolar interaction.

As an example let us take the dipolar interaction. The classical interaction energy E between

two magnetic moments y; and u, is
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. w7 -
E = ) ;uz _ (tu’l r)s(‘uZ I’) & (171)

r r 4m
and the corresponding spin Hamiltonian is therefore

n’ 3L -, )L, T
j_[D — Uy yl})@ (Il . 12 _ ( 1 12”)2( 2 12))‘ (172)
12 12

We will now do something strange, because we know that subsequently the dipolar
interaction, like the chemical shift, will be truncated by H,. We expand H , into a series of

orientationally dependent terms, called the dipolar alphabet:
z

Figure 1.10. Definition of the coordinate system for Wigner rotations.

2
3{D=%(A+B+C+D+E+F)
r

where

A=1.1,(1-3cos’0)
B=-L(I'L; + I} )(1- 3cos 0)
C= _%(IflzZ + Ilzlg)sinecos Oexp(—ig)
D=-3(I L, +1.I;)sin6cos Bexp(+i¢)‘
= -3 II; sin” Bexp(-2ig)
F =3I 1 sin’ Bexp(+2i¢)
(1.73)

where the coordinate system is defined in figure 1.10.
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This notation appears useful when we note that J . and H,, do not commute. Since J, is
about 20 kHz and H._ . about 100 MHz, H, p 18 a perturbation on H .»or, in other words, H .
will truncate J{,, and we retain only those parts of F{, that commute with H,. Thus the
high-field truncated dipolar Hamiltonian is

1 Hoh V1Y

H
DT 4wt

(1 3cos’ 9)(3] L, -1-1,)

(1.74)
and [.’7—[ Z,.’l—[ D] =0, which amounts to dropping the terms C, D, E, F. This is the homonuclear
it I such that
, since now the term B is also non-secular, and

dipolar Hamiltonian. Furthermore, and [, are different nuclei,

we obtain

H=wl, +w,l, +dl_1, (1.75)

2
where d = M(l —3cos® 6).
47

Effect on the spectrum (heteronuclear interaction)

To calculate the effect on the spectrum we must first of all find a suitable basis set for the
coupled two spin system. The Hilbert space is now sixteen dimensional and we obtain a

product basis spanned by 16 basis operators of the two spins / and S

LI..1,,I,S,.S,.S,,

x>tysizs

LS. 1,S,.I.S,.1,S,.1,S,.I.S,.I,S,.1,S,.I.S

W2 Lz0x s dxPy s dyRy s lz0y sl xR0 zoLyD 75 4707

The matrix representation of these operators is in terms of 4 x 4 matrices obtained from the

Pauli matrices for spin / = % with the direct product as follows:

00 1 0
0 1) _(1 0y 10 0 0 1
Ix:l)‘@l:z(l 0)®(0 1)71 0 0 0
0 1 0 0

1 0 0

1 0)_1(0 1) 1{1 0 0 0

=1®5 (0 1)®;(1 0)_20 0 0 1
00 1 0

(1.76)
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1 0 0 0
11 0)_1(1 0} 1j0 -1 0 0
cevonety 2oty U
o -1)%50 -1)7, 0 0 -1 0
0 0 0 1

etc....

Afterwards the calculation proceeds as before. For the homonuclear dipolar coupling we can

calculate the free precession signal analytically. After a 90° pulse along y

0,(0)=1,(+S,). (1.77)

Typically in NMR calculations we only follow the fate of one component at a time. Thus, for
the moment we neglect the presence of transverse magnetization of S. We have for the

transverse magnetization of / at time ¢
(1.X1) = Trexp(+iH 1)L, exp(-iH 1)L, } . (1.78)

Using the fact that the Hamiltonian is the sum of three commuting parts and that [I + ,SZ] =0,

we obtain

exp(+iH 1)1, exp(-iH ) = exp(i(a), + DSZ)IZt)Lexp(—z(a), + DS, )Izt)
= exp(i(w, + DS.)t)I, (1.79)

=exp(i t)chos § t+ 2iS, sing t}L

which we obtained by using the operator relation exp(iqb]z)l + exp(—i(plz) = exp(ig)1 ,.) and

from the relation

R.(¢) = cos% ~ 2il, sin% : (1.80)

Inserting this into the expression for /, we obtain
) D
(1,X1) = 1 exp(za)lt)coszt. (1.81)

Thus the dipolar spectrum consists of a doublet at +D/2 centered at w; (and similarly for wg,

as shown schematically in figure 1.11a
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It is very important to note that (i) the splitting contains information about the internucler

distance, and (ii) it is orientation dependent.

(a) < D >

frequency

b <«———15D—>

frequency

Figure 1.11. Schematic doublet splittings obtained at high field under the heteronuclear (a) and homonuclear (b)
dipolar interaction.

The splitting depends on the orientation of the internuclear vector with respect to the magnetic
field. The orientation dependence or anisotropy was introduced by truncation. It is an all
important feature of NMR in solids as well as liquids. Note that for 6 =54.74°,
Py(cosf) =0, H,=0.

Homonuclear dipolar spectrum.

In the limit of |a)1 - w2| =0, we obtain a single doublet splitting, with a modified value of the
splitting with respect to the heteronuclear case, figure 1.11b. All our other remarks for the

heteronuclear case about anisotropy are also valid for the homonuclear case.
Quadrupolar Hamiltonian.

The quadrupolar interaction arises from the presence of an electric field gradient at the
nucleus interacting with a non-spherical charge distribution. We will not go into more detail.
We will just note that F, o =0 for spin I =3, but that it is normally not zero for /> 3. The

Hamiltonian is expressed as
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eQ
¢~ 61(20-1)h a’gxaﬁ [%(Ialﬁ +1,0,) = 0,,0(1+ 1)] (1.82)
eQ
“eiei-n’ V! 183
¢ 61(21-1)h (1.83)

where eQ is the nuclear quadrupole moment and V is the electric field gradient tensor. We

define a quadrupolar coupling constant

3¢%90
_ 490 .84
Y0 = 412r - 0n (1.54)

where eq represents the field gradient component V., and with an asymmetry parameter

T

given by n = (Vxx -V ) / V,, , and the secular Hamiltonian becomes

H, = w—;(ﬂf ~r (I —If))(%(?acosz 6-1)+ Lnsin’ Hcos2¢) (1.85)

This is very similar to the homonuclear dipolar Hamiltonian for /; = I,, and indeed for spin

L

frequency

Figure 1.12. Schematic splitting obtained at high field under the first order quadrupolar interaction for a spin / =
3/2. The center line is at zero frequency, and is flanked by an orientation dependent doublet splitting.

I=1,e.g. H, we obtain a doublet with an orientation dependent splitting. For higher spins
we see more lines, e.g. for spin [ =% (*Na) we see an orientation independent central
transition and two orientation dependent outer lines, as shown in figure 1.12. In general there

are 2/ non-degenerate transitions.

H, and H, are all

orientation dependent with respect to F .- They all have a tensorial nature.

In conclusion, we have clearly seen that the secular parts of J

cs?

Tensor notation.
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What does the "tensorial character" mean? It means that since we measure only the "z-
component" of the interaction that the observables depend on the direction in which we look
at them. This is perhaps easiest to explain intuitively for the chemical shift in
phenomenological terms. If we take the example of figure 1.13, where the chemical shift of
each carbon atom is shown as an ellipsoid. This means that, for example, if the aromatic ring
is oriented parallel to the field the resonance frequency of an aromatic carbon is relatively
high, since there is relatively little electronic shielding in this direction compared to when the
aromatic ring is perpendicular to the field. In the perpendicular orientation there is more
electronic shielding along the direction of the field, and so the resonance frequency is lower in

this orientation. The chemical shift is therefore naturally seen to be orientation dependent.

We can also think of the dipolar interaction - if the dipolar interaction is "aligned" with the
field, its projection onto the field will be large. If it is "orthogonal" to the field its projection
will be zero. For example, if the effect of an interaction were simply to add a small dc field,
its transverse component would be truncated and we are left with the projection
H™ =" cosO. The resultant field depends on the orientation of the dc field. Such an
interaction transforms as a rank 1 tensor (cos6). We shall see that the spatial part of the NMR

Hamiltonians transform as

Figure 1.13. Schematic representation of the effect of chemical shift anisotropy on the spectrum of a single
orientation. The position of each peak depends on the relative orientation of the magnetic field with respect to
the principle axis of the chemical shift tensor.
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rank 2 tensors, so they have a slightly non-intuitive (3cos’6-1) dependence, i.e.,
"orthogonal" = 54.74°. (Note that some of the spin parts of the Hamiltonian often transform as

rank 1 tensors).

All of the Hamiltonians we have seen up to now have a common structure

A A A A A A
H,=C ElaRaﬁAaﬁ -C ERaﬁTﬁa (1.86)

af=xyz af=xyz

The C* depends only on fundamental constants and properties of the nuclear ground state.
They are in particular constants with respect to rotation in either spin space or space (Kirk)

space (the final frontier).

The T;a are tensors constructed from two vectors, one of which is always a nuclear spin
vector, whereas the other can be the same nuclear spin vector (A = Q), another nuclear spin

vector (A = D), or the external magnetic field (A = cs).

The R are spin state independent coupling tensors. All R* are rank 2 tensors. For example

H,=C" Ella-Daﬁ 'L, (1.87)

afi=xyz

where D, consists simply of the coefficients going with /,.I,,

H,«D IS +D,IS +D_IS,+D,IS, (1.88)

xTxx ywoysy 7z xy“xTy-*

where, for the untruncated Hamiltonian, the coefficients are found in the dipolar alphabet and

where, for the truncated heteronuclear dipolar Hamiltonian, only D, is non-zero.

The R* can be decomposed into their irreducible representations with respect to the full three-

dimensional rotation group O3:
R=R”+RY + R

(1.89)
)
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Q

R, the orientation independent, isotropic, component, R(% is the traceless anti-symmetric
part, and Rl(jj) is the traceless symmetric part of the interaction. Note that the chemical shift

contains all three parts, in principle, but that the RS; component is generally not secular and
thus inobservable. The dipolar and first order quadrupolar interactions are traceless symmetric

Q

by their very nature. We therefore ignore R(% in the following.

For all R” there are principle axis systems in which the tensors are diagonal. The diagonal

components are called the principle components R, R and R_. By convention

R,.-R|z|R,-R|z

R,-R| (1.89)

(2)

(the R, — R are the principle components of R*”'. We often define three other parameters:

Riso = %Tr{R}

8=R_-1iTr{R}=R_-R (1.90)
R,-R, R,-R,

TR iR T 6

0, the anisotropy, is a measure of how sensitive the interaction is to orientation. 1, the
asymetry parameter, quantifies the deviation from axial symmetry. The dipolar interaction is
axially symmetric about the line connecting the two nuclei, thus for R°, n= 0, and the

principle axis system is easy to define. For oand Q the PAS can be harder to find.
1.7. Lineshapes in Solids.

To calculate the resonance frequency we need to calculate for a given orientation of the
molecule in the magnet (i.e., for a given orientation of the PAS in the laboratory frame) the
"projection" onto the secular component of the Hamiltonian. To do this we must rotate the
PAS into the laboratory frame. Note that, additionally, all the techniques of coherent
averaging which will be discussed later, rely on rotations. Thus rotations are crucial, and that
is why we introduced tensor notation, for which the algebra of rotations is highly developed.

Thus in strict tensor notation we write

H*=C' Y N (-1)' R, T, (1.91)

A
a,f

with spherical tensors, as opposed to cartesian tensors. At first sight this may seem

where the Rfm derive from the R’ ;, and the Tfm derive from the Ta;tﬂ . We are now dealing
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complicated, but we shall see that in the end it yields simple recipies and tables to calculate
spectra.

We can already make some simplifications. (i) For second rank symmetric Cartesian tensors
Riﬁ , only Rfm with / = 0,2 will be non-zero. (ii) For the R* in their PAS, only components

with m = 0,£2 are non-zero. Thus we find that the p,,, , the components of R, in their PAS,

are

Poo =Ry,

P20 =3(R. - LTr{R}) =25 (1.92)
p2,:2 = %Tlé

Since we observe the time-evolution of the spin operators in the laboratory, we express the
T,,, in the laboratory frame. As a result we must also express the Rfm in the laboratory frame.
Since they are irreducible tensor oerators they may be expressed in terms of the p,,, and of
the Wigner rotation matrices, D! (OCA,[J)A,}/}L) , SO that

m',m

R}, = ) Diy (B2 p (1.93)

where a’,p%,y” (denoted by Q") are the Euler angles by which the laboratory frame can be
brought into coincidence with the Ath PAS system, using the sign convention shown in figure
1.10. The transformation correponds to a rotation by « around z, by f around the new y axis,
and by y around the new z axis. Dg,o is a constant (unity), and reflects the isotropic

component. Thus the only Wigner matrix we actually need is the D’

m',m

matrix which is given

in table 1.1. Similarly, the irreducible spin operators Tfm are obtained from the Cartesian Ta’f 6

are also given in table 1.1.

We can now express the Hamiltonian in terms of rotational invariants, irreducible tensor

operators, and elements of the Wigner matrix D?

For example, for the dipolar coupling,

C” =2y'y’n’u, 47

P2y =207 =37 (1.94)

Pry =0 form'=0

which yields
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R, =D;, (@) (1.95)
which in turn yields
vy Ry m
> =6 T"E(—l) D, (@°)TE, (1.96)

m

Note that the D? are identical to the spherical harmonics Y, which behave under rotation
0,m p 2.m

exactly as the R, .) For the truncated Hamiltonian we find that only T;j) contributes, so
1,.5%2
,\/_y }/ h Au“O D2 (QD)TD (1'97)
and we recover

1,,5%2
HP =%%ZMO(1—3C0S2 B)30.L, -1, 1,) (1.98)

For the chemical shift we find by a similar calculation

H, = wolz(o+ 6[3(:%/31 5 —7sin ﬁcosZyD (1.99)

This notation/formalism will be useful everywhere.



Lectures on Pulsed NMR

34
n=0.0
n=0.5
n=1.0
4 08 06 04 02 0 02 04 06 08 i
frequency (kHz)

Figure 1.14. Simulated spectra showing the lineshape due to the anisotropic chemical shift interaction in the
high-field NMR spectrum of a single spin / = 1/2 in a static powder sample for three different values of the
anisotropy parameter.

Consequences of anisotropy on the spectroscopy of solids

In general the calculation of a solid-state NMR spectrum involves the following

transformations:
PAS —Srscus 5 CRYSTAL —2votie s [ AR

1. Single Crystal Spectra. This is what we have been calculating so far. In principle a
spectrum of a single crystal will be different for different orientations of the crystal. By
recording the spectra as a function of orientation with respect to the field we can determine all

the principle values and the orientation of the CSA tensors in a crystal fixed frame.

2. Powder Spectra. These are more interesting samples (since they are not suitable for X-ray

studies). A powder is a superposition of all possible crystallite orientations. Therefore we
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expect to see a spectrum which contains all the frequencies seen in rotation plots, suitably

weighted by their populations. Thus the lineshape is given by

2nr w

I(a))=ffé(a)—a)zz)p(g)dasinﬁd/)’

0 0

(1.100)

6 4 -2 0 2 4 6
frequency (kHz)

Figure 1.15. Simulated spectrum showing the lineshape due to the dipolar interaction in the high-field NMR
spectrum of a pair of identical spins I = 1/2 in a static powder sample. (An identical lineshape is observed for the
quadrupolar interaction for a single spin / = 1).

where p(€) is the probability of finding a particular orientation. w,, is the observed
frequency for that orientation, and is calculated as described above. This form for the
lineshape leads to a powder pattern. (Note that this is valid for all of CSA, dipolar or
quadrupolar interactions.), as shown in figure 1.14 and figure 1.15. Note that the princicple
values of the CSA tensor are available by simple inspection, but that no information is now
available with respect to the orientation of the PAS. The powder pattern is, of course,
invariant to the orientation of the sample. Note also that powder spectra are inherently low

resolution. The width of the pattern is
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0
frequency (kHz)

Figure 1.16. Simulated spectrum for three chemically different spin / = 1/2 sites in a static powder sampleEach
site has a different value of the isotropic chemical shift and different anisotropy parameters. This is typical of
"real" samples, and demonstrates how the spectrum becomes intractable in the absence of simplification.

often comparable to the difference in chemical shift, leading to spectra such as that shown in

figure 1.16. One way to improve resolution is to orient the sample.
1.8. Spin Echoes.

The objective of this section is to show how to approach the calculation of the effect of a

series of rf pulses and delays.
Spin echoes for isolated spin I = 1/2

The spin echo pulse sequence is shown in 1.17a. We can see from a very simple classical
analysis shown in figure 1.17b that we expect the sequence to "refocus" the chemical shift

interaction. Let's see if we can obtain this result analytically.

For a spin whose resonance frequency in the rotating frame is w,,,

H=wl (1.101)
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/2 T

dhwwdbhwwdh
%

§§ y w\b\‘___.' g RN / ’ ) ’
oy wa |
X X X

Figure 1.17. The sequence suitable to produce a spin echo, and the vectorial representation of the evolution of
two chemically different species a and b evolving at frequencies w, and w, during the sequence. Note that at the
end of the second 7 period the two spins have been refocused.

at time T we have the operator for evolution

U = exp(-iw,, ) (1.102)

sz
Immediately after the second pulse we have

Ulr, ) = exp(-ind, )exp(-iw 1, ), (1.103)
and at a time ¢ later this becomes

Ut +7) = expl—iw,tl, )exp(—inl, Jexp(-iw ) (1.104)
which can be written under the form

Ut +7) = expl—iw(1 - 7)1, )exp(-iw ., )exp(-ial , )exp(-iw L, ). (1.105)
Considering the last three operators on the right hand side of eq. (1.105)

R = exp(-iw, g, )exp(=inl, Jexp(-iw ). (1.106)

It can be shown that if U is a unitary operator

Uexp(A)U™ = exp(UAU™), (1.107)
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and going back to equation (1.106) we can write
R = exp(-iw, g, )exp(=inl, )exp(-iw. ., )exp(int, )exp(-in, ) (1.108)

cs 2

where the product of the three central operators is of the form of equation (1.107) with

U = exp(-ial,),A = —iw,tl,, f(A) = exp(-iw,A) (1.109)
so that
exp(—ia, )exp(-i w7, Jexplind, ) = explicw,,) (1.110)

and equation (1.106) yields

R = exp(—ia)csrlz)exp(iwcsrlz)exp(—inlx) = exp(—i:rlx) . (1.111)

Thus, equation (1.105) becomes

U(t+ 1) =exp(-iw,(t - )1 )exp(-ind). (1.112)

Note that we have manipulated the evolution operator, which is a very common trick in NMR,
and not the density matrix. Thus the result is valid for any initial state of the system
represented by 0. We note that the total evolution operator consists of (i) an initial pulse of
angle s about x, (ii) precession about z by an angle ¢ = w_(f — ). Note especially that for
T=t,

U(27) = exp(—-ind ). (1.113)

and the evolution is independent of chemical shift. This corresponds to the formation of a spin
echo, as was predicted in figure 1.17.

7/2(x) m(y)
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Figure 1.18. The qudrupolar echo pulse sequence.

Quadrupolar Echoes.

The quadrupolar echo (or "solid echo") serves to refocus the evolution of spins under
Hamiltonians which are bilinear in the same type of spins, such as homonuclear dipolar or
quadrupolar couplings of the form

H = 3]12121—11' ]2. (1.114)

which are not refocused by the sequence above (the Hahn echo). The quadrupolar echo is

generated using the sequence shown in figure 1.18, which leads to the following propagator
Ut +7) = expl-iwgt(31;, 1, - I - 1))exp(+iZ 1, Jexp(-iwgt(31 1, I, - I * 1)).. (1.115)

Analogously to the previous example, this can be written

U(t +t) = exp(—iwyt(3 1.1, - I -Iz))exp(+i%1y)exp(—ia)@t(3llzIZZ ~5-1))

(1.116)
xexp(—i%ly)exp(H%Iy)
and using equation (1.107) again we obtain
Ut +7) = expl-iwgt(31, 1, - I - ))exp(=iwgt (31, Iy, = 1y - I ))exp(+i 2 1, ). (1.117)

The two leftmost exponentials can be combined, since I, I,, commutes with I}, /[, , so that

for T = t, by using the relation

3 L, = I - + 35, 0y, = 1 1, +30, 1, - 1,1, =0, (1.118)
(which is of great relevance elsewhere) and by expanding the scalar product /; - I, we obtain
U(27) = expl ~iwgr(3h, Iy ~ 1, L) |exp(+i%1,). (1.119)
For 0(0) = 1, created by an x pulse from z magnetization, we thus find an echo condition

o(27) = UQ2T)LU (21) = I;. (1.120)
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since [3 Iiybhy, -1, -IZ,Iy] = 0 (analogously to Zeeman truncation). Note that this only works

for a single dipolar interaction. For a many spin dipolar coulping, with the sum over all pairs,

it does not work. It always works for the first order quadrupolar interaction, and is widely

used to avoid "deadtime effects," and to study molecular dynamics (since dynamics can
y y y

interfere with the echo formation).”

ey

(2)
3)

“4)
(&)

(6)

(7
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